
the intensity of heat exchange between the phases; C d, the coefficient of particle aero- 
dynamic drag; Nu, Nusselt number; Rel~, Reynolds number for the streamlining of the par- 
ticles; Pr, Prandtl number; d, the particle diameter; R, the radius of the apparatus. Sub- 
scripts: i = i, gas; i = 2, particles; k, the summation index; ~, the parameters have been 
taken at the section AB; w, indicates that the parameters have been taken at the section 
ME; r, ~, z, the axes of the cylindrical coordinate system. 
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ISOTHERMAL AXISYMMETRIC FLOW OF AN INCOMPRESSIBLE FLUID 

IN RADIAL CONTACT APPARATUS 

P. G. Shtern, E. A. Rudenchik, S. V. Turuntaev, 
I. S. Luk'yanenko, E. G. Bezrukova, and E. K. Popov 

UDC 552.546 

A method is proposed for the calculation of the axisymmetric flow of an incom- 
pressible fluid in a radial apparatus with a nonmoving layer of granular ma- 
terial. An engineering method is developed to evaluate the degree of flow 
nonuniformity in equipment of this type, thus making it possible operationally 
to choose among structural solutions in the design of this equipment. 

A number of research studies [I-4] have been devoted to the theoretical and experimental 
study of flow distributions in perforated channels and radial reactors. The energy approach 
within the framework of a one-dimensional model is utilized in calculating the distributions 
of flows in perforated channels [I, 2]. The flow model for radial equipment with a nonmoving 
granular layer, such as that proposed in [3], is valid for low velocities when the resistance 
to the flow within the catalyst layer depends linearly on the rate of filtration. There is 
no doubt as to the importance of calculating the flow in industrial reactors, where the quad- 
ratic relationship between the pressure drop across the layer and velocity is valid. 

Let us examine the axisymmetric flow of an incompressible fluid in an apparatus whose 
diagram is shown in Fig. la. The granular layer is situated between two coaxial perforated 
cylinders. The fluid flows into the apparatus at a velocity Vin through a distributing col- 
lector I, passes through to the operating zone III, and is discharged from the apparatus 
through the outside collector II at a velocity Vou t. The following circuits may be regarded 
as special cases: a perforated channel with a dead end (zone I); an apparatus in which the 
atmosphere functions as zone II (zones I and III). 

The mathematical model is based on the assumption that the fluid is incompressible: 

d i v v  --- O, ( 1 )  
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Inzhenerno-Fizicheskii Zhurnal, Vol. 56, No. 4, pp. 555-562, April, 1989. 
submitted September 16, 1987. 

Translated from 
Original article 

388 0022-0841/89/5604-0388512.50 �9 1989 Plenum Publishing Corporation 



rout q~ ~0 9 qg r~ 

I I ~?-~P 0ut- 2 o ol; 

I o/~ _to~w ~" t z 

~ ' ~ 
b 

Z 

-2- qg /y 

- @ t j '  ' 

I -to [- 3 11 a 
uin 

Fig. I. Diagram of contact apparatus with radial liquid or gas 
inlet (a); theoretical (solid lines) and experimental (points) 
relationships between the relative values of the radial velo- 
city component at the outlet from the granular layer (boundary 
F2) and the height of the apparatus (L = 0.8 m, R z = 0.065 m, 
R 2 = 0.185 m, Rap = ~) [4] (b): i) f = 8580 kg/m~; 2) 13,330; 
3) 16,800; 4) 25~500. 

in regions I and II we have the potential flow 

rotv =0, 

while in the granular layer (zone III) the Ergun quadratic law is valid [5]: 

(2) 

VP = -- /Iv]  v. (3) 

The pressure within the collectors is determined from the Bernoulli law: 

I 
p = -~ -p jv l2  = const. ( 4 )  

The boundary c o n d i t i o n s  make p r o v i s i o n  fo r  the  c o n t i n u i t y  of  t he  p r e s s u r e  f i e l d  and of  
the normal velocity components at the boundaries of the layer, which follows from the equa- 
tions for the conservation of mass and momentum. 

The existence of perforations at the boundaries of zones F l and F 2 leads to a situation 
in which the pressure undergoes a jump on transition from one zone to another, and the magni- 
tude of this discontinuity is determined from the law governing the drag generated by the 
perforations [6]: 

~Pl.2 = ~, ,2 (v~, i.~) 2. ( 5 )  

It was suggested in [2] to use the following formula to calculate the perforation drag, 
which corresponds to the average rate of flow through the boundary between the zones: 

Let us write the continuity equation (i) in terms of the stream function ~: v r = (l/r)/ 
(8~/8z), v z = -(i/r)(8~/~r). The potentiality condition (2) indicates that the stream func- 
tion in regions I and II satisfies the Laplace equation 

( 0 ~  ~ h ~ ' =  o. ( 6 )  -gF+ 
The e q u a l i t y  of  t he  p r e s s u r e  d e r i v a t i v e s  combined wi th  the  Ergun law y i e l d s  t h e  f o l l o w i n g  
n o n l i n e a r  e l l i p t i c a l  e q u a t i o n  fo r  zone I I I :  

~ 0~---~--~1' +(Ivl z + e'~ ) - -  - -  2VrUz + 2V~ Ivl z + r Iv? v~ Oz Or I (Iv12+ v; )  Oz 2 Or 2 ~zOr  - - - -  v~ = 0 .  ( 7 )  
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Our attention is drawn to the fact that if the normal component of the velocity at the 
boundary of the zone is given, i.e., the values of the stream functions at the boundaries 
have been determined, only a single solution exists for the elliptical equation. 

The solution of Eqs. (6) and (7) and the calculation of the pressures in each zone of 
the reactor for given normal velocity components at the boundaries of zones F i and F 2 will 
be referred to as the solution of the direct problem. However, generally speaking, this so- 
lution does not provide for satisfaction of the boundary conditions with respect to pressure. 
In order to find that single solution which satisfies all of the boundary conditions we have 
to solve the inverse problem, and namely, to find the normal velocity components at the boun- 
daries of F I and F 2 such that conditions (5) will be satisfied at these boundaries. Mathema- 
tically, this problem can be formulated as the problem of seeking out the minimum functional 

�9 L i - ,  

(8) 

where the pressure in zones I and II at boundaries F I and F 2 are determined from the Bernoulli 
equation (4): 

PIl----Pin P iv2  q_v 21], 
2 

p~I Pout p 2 2 - -  [v~ 2 + v~,2l, 
2 ' 

while Apm,2 is determined from Eq. (5). 

In order numerically to find the minimum of functional (8) it is necessary to give the 
function Vrl,2 a parametric representation by means of a finite number of independent param- 
eters. Here it must be borne in mind that in view of the law of the conservation of mass 
Vr, I and Vr, 2 are related by the condition: 

F~ F2 

In order to make it possible to select the parameters Vr, l and Vr, 2 independently, we 

will determine the velocity profiles of Vr,m and Vr,2, normalized so that RI i v~.1(z) dz = 
FI 

R2 Ivr.~(z)dz = I, and then we determine the amplitude of the velocity u: Vr, I = UVr,1; Vr, 2 = 
F~ 

UVr, 2. The numerica I calculations demonstrated that for normalized profiles of Vr,1 and Vr,2 
parametrization with three parabolas is quite satisfactory with a continuous first �9 derivative 
at the joining points (quadratic splines). Each of these splines is defined by six parameters. 
We used the two coordinates of the joining points and four values of Vr,1 (or Vr,2) at fixed 
points as the parameters. 

The relationship between functional (8) and the amplitude of the velocity is quadratic, 
and minimization of the functional on the basis of this parameter is accomplished analytical- 
ly. Moreover, the minimization with respect to P0 is also done analytically, i.e., the quan- 
tity which arises in the determination of pressure from the Ergun equation (3). 

It is important to point out that in none of the numerical experiments, and hundreds 
of these were carried out for a variety of resistance factors and geometric dimensions of 
the apparatus, did we observe any local minima with values of ~(vr,l; Vr, 2) ~ 0. 

The feasibility of the theoretical model was verified on the basis of the experimental 
results for a channel with perforated walls [2] and for an apparatus in which the flow dis- 
charged into the atmosphere [4]. Figure 2 shows the theoretically derived values of the velo- 
city Vz and the pressure in the distributing collector, as compared to the experimental values 
from [2]. We see that the results of the calculation are in good agreement with the measure- 
ment results and the curves obtained on the basis of the energy approach. Adequate agreement 
was shown by profiles for the radial velocity component at the outlet from the granular layer 
for the apparatus in which the flow was discharged into the atmosphere (see Fig. ib), obtained 
theoretically and measured with a heat-sensing anemometer [4]. In addition, we might take 
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Fig. 2. Distributions of relative values for the axial velo- 
city component (a) and the relative pressures (b) along the 
length of a perforated channel with a closed end: the solid 
lines indicate the numerical calculation performed by the 
authors; the dashed lines denote analytical calculations; the 
points indicate experimental data from [2]: i) ~ = 0.04; 2) 
0.08; 3) 0.15. 
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Fig. 3. The effect of layer resistance on the distributions of 
the relative values of the axial velocity component at the boun- 
dary F l (a) and the radial velocity component at the boundaries 
F l and F 2 (b) through the height of the apparatus, with the flow 
escaping to the atmosphere (L = i m, R I = 0.053 m, R 2 = 0.3 m, 
Rap = ~): f) f = 52,000 kg/m4; 2) 1500 kg/m4; 3) 65 mg/m 4. 

note of the fact that as the resistance factor of the perforated channel increases (with a 
reduction in ~), we observe approximation of the distribution in the axial component of the 
velocity to the linear (Fig. 2), while with an increase in the resistance factor of the layer 
the profiles of the radial velocity components become increasingly uniform (see Fig. ib). 

The theoretical profiles of the axial and radial velocity components shown in Fig. 3 
show that with an increase in resistance in the system the distribution of v z in zone I tends 
to the linear, and the flow is uniformly distributed in the layer and the profile of v r at 
the boundaries F I and F 2 within that layer becomes uniform. If the resistance of the system 
is not large, the nonuniformity of the flow increases sharply, and most markedly at the in- 
let into the layer. 

Thus, the magnitude of the nonuniformity in a radial apparatus is characterized by devia- 
tion from the linear on the part of the distribution of the axial velocity component along 
the distributing collector. 

These results make it possible to construct an engineering methodology for the evaluation 
of the degree of flow nonuniformity in a radial apparatus, such as may be necessary, for ex- 
ample, in the design of this equipment or to estimate the influence exerted by these nonuni- 
formities on the processes occurring within the granular layer. 

Let us consider an ideal reactor, i.e., a reactor with sufficiently great resistance, 
in which the pressure drop Apc across the distributing collector is considerably smaller than 
the total pressure difference Ap across the apparatus. In this case, as follows from the 
results of the numerical calculations (version i in Fig. 3), the axial velocity component 
Vz, I at the boundary F I is linear with respect to z, while the radial velocity component 
Vr,1, 2 is constant. Moreover, within the layer v z ~ Vr, since (gradP)r >> (gradp)z, and 
f(r, z) is assumed to be constant. 
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Fig. 4. Coefficients of flow-rate reduction (open circles) and 
degrees of flow nonuniformity (closed circles) as functions of 
the pressure difference across the distributing collector (a): 
i) versions i-ii; 2) 12-19; 3) 20-23. Calculation of optimum 
dimensions of radial reactor (b): a) the function L2RI = Q2f/ 
4~2Ap; b) the function LRI 2 = ~IQ/~; i) ~ = 0.2; 2) 0.i; 3) 
0.05; 4) 0.01. L, R~, m. 

TABLE i. Calculated Versions of the Equipment and Their Param- 
eters and Corresponding Values 

Apparatus with flow outlet open to the at=m- I 
sphere: L = Im; R i = 0.053 m; R 2 = 0.3 m; /Apparatus with outlet 
Ra p = ,x,, 02 = 0 | collect 

~ 
0 ~ z  6 

% % 

�9 . Z  , ~  

I 
2 
3 
4 
5 
6 
7 
8 
9 

I0 
II 

23OO 
II00 
575 

II00 

190 
142 
257 

51600 
2525O 
13160 

658O 
7420 
4450 3g~ 
2110 
1480 

12 0 103200 
13 0 50440 

o 

17 0 13160 

16 0 8900 
0 6580 

18 0 4210 
19 0 2970 

0,20 
0,42 
0,80 
0,83 
1,6 
2,37 
2,37 
3,20 
3,57 
5,00 
7,08 

20 
21 
22 

23 

L.-2,65m; Rt -- 0,225 m; 

R~ = 0,585 m; @ap = 0,7 m; 

9~176 I 2 1 5 2 9 0 ] ~  58 9 5290 0,39 
4.930 0,61 

L .=7m;  R x = 0 , 6 m ;  

R2 = 1,55 m; Rap--=- 1,85 m; 

5 I 1235 II0400[ 0,05 

For such a reactor from Eq. (3) we have 

O p  _ f l v l v ~ 0 ;  O p  _ f v ~  . 
Oz Or 

The c o n t i n u i t y  c o n d i t i o n  f o r  t h e  f l o w  y i e l d s  

vr = A/r,  

w h e r e  A i s  t h e  c o n s t a n t  s u b j e c t  t o  d e t e r m i n a t i o n .  

H a v i n g  i n t e g r a t e d  ( 9 ) ,  w i t h  c o n s i d e r a t i o n  o f  ( 1 0 ) ,  we o b t a i n  

P = Po + fA21r, 

where P0 is the integration constant. 

With consideration of (5), 
reactor will be equal to 

(9) 

( i 0 )  

(il) 

(i0), and (ii), the total pressure difference across an ideal 

[7 ,  (72 ( A p =  A 2 (71 + - ~ 2  + [ - 
R1 Rz 
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The velocity of the gas at the inlet zone I is determined from the condition of flow-rate 
constancy: 

V~x(2L/R1)vr,~ = 2LA/R~. (13) 

The pressure difference Ape = PVin2/2 along the distributing collector in dimensionless 
form, with consideration of (12) and (13), is written as follows: 

Ape 2pL2[  ~ a ~  ( 1 1 ) ]  
A c= Ap - (14) 

It is obvious that the distribution of the flow in a radial apparatus will be uniform 
when APc << I. With a reduction in the resistance of the system Ap and Vin are diminished 
(or the flow rate Q) in comparison with an ideal reactor. In this case, APc increases and 
the velocity profiles in zone III become nonuniform. Let us introduce the coefficient for 
the reduction in the flow rate as the characteristic for the magnitude of the flow nonuni- 
formity: 

= (Vin -- V;~/Vin (15) 

and the degree of profile nonuniformity at the boundary Fz: 

m a x  ~ l n  
= ( O r ,  1 - -  V r , 1 ) / O r , 1 ,  (16) 

where Vin i s  de termined from formula (13) ,  whi le  vinP is  de termined n u m e r i c a l l y  from the  mo- 
de l .  

In o rder  to  de te rmine  the  r e l a t i o n s h i p  of  ~ and ~ on Apc, we c a r r i e d  out  c a l c u l a t i o n s  
of the  f lows in v a r i o u s  types  of  appara tus  wi th  d i f f e r e n t  h y d r a u l i c  c h a r a c t e r i s t i c s  and geo- 
me t r i c  d imensions .  The i n i t i a l  da ta  fo r  the  c a l c u l a t i o n s  a re  given in Table 1, whi le  the  
r e s u l t s  of  the  c a l c u l a t i o n s  can be found in Fig .  4a. I t  fo l lows  from t h i s  t h a t  the  sought  
r e l a t i o n s h i p s  f a l l  w i t h i n  a range of  v a r i a t i o n s  in A~c = 0 -2 .5 ,  which i s  i n t e r e s t i n g  from 
the  s t a n d p o i n t  of  e n g i n e e r i n g  a p p l i c a t i o n ,  and can be r e p r e s e n t e d  wi th  good accuracy  by the  
l i n e a r  r e l a t i o n s h i p s  

~=Apd6; ~= APc/2" (17) 

Relationships (17) are universal and weakly dependent on the geometric and hydraulic 
characteristics of the reactor over a rather broad range of variations in these quantities. 
With uniform permeability of the granular layer, the area of application for relationships 
(17) is limited only by the conditions of flow potential and the incompressibility of the 
fluid, which are satisfied in the majority of the types of apparatus used in actual practice. 

Let us examinethe examples of practical application for the proposed engineering meth- 
odology. 

Let us calculate the optimum dimensions of an industrial ethyl-benzene dehydration reac- 
tor using a K-24 catalyst with a hydraulic drag coefficient of f = 8330 kg/m 4 and a contact 
gas flow rate of Q = 50 m3/sec, where the density under operating conditions is p = 0.8 kg/m 3. 

The maximum pressure drop across the reactor is Ap = 15,200 Pa (0.15 atm), and the maxi- 
mum permissible stay time of the raw material in the distributing collector (zone I) is ~I = 
0.15 sec, the contact time of the vapor hydrocarbon mixture with the catalyst is Ti11 = i 
sec, while the stay time of the contact gas in the outlet collector is ~II = 0.25 sec. 

Assuming that [(Ol/Rl 2) + (o2/R22)] ~ f[(i/R I) - (i/Ra)] and R~ ~ R2, with consideration 
of (i0) and the fact that Q = 2~RzLvr,z, from expression (12) we obtain 

L~R~ ~ Q~t (18) 
4~Ap 

Since T I = VI/Q = ~Rz2L/Q, we have 

The region A situated above the curve a' satisfies inequality (18), while the region B 
below the curve b (Fig. 4b) satisfies inequality (19). The dimensions of the reactor which 
satisfy both of these conditions are found in region C within the intersection of A and B. 
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Under the assumptions made here, from expression (14) we have APc= 2pL2/R13f. Knowing 
that $ = APc/2, we obtain 

L2/R~ = ~[/P" (20) 

Figure 4b shows a family of curves (20) for various degrees of nonuniformity $. We see 
that if the reactor has dimensions of the region D bounded by the curves a, b, and i, then 
the maximum nonuniformity in such an apparatus will be 20%. For $ = 0.I the region of per- 
missible dimensional values becomes constricted, while in the case of $ = 0.01 it is impos- 
sible to attain the optimum, since curve 4 does not intersect with region C. From Fig. 4b 
we can determine the optimum dimensions of the ethyl-benzene dehydration reactor in which 
wewill have the minimum possible degree of nonuniformity $ = 0.05: L = 8.2 m, R 1 = 0.53 m. 

The diameter of the outlet collector is determined on the basis of the average contact 
time between the reaction mixture and the catalyst. It is obvious that ~III = VIII/Q = 
~(R22 -- RI2)L/Q, from which we find R 2 = /TIIIQ/(~L ) + Ri 2 = 1.5 m. 

The stay time in the outer collector can be estimated approximately as TII = VII/Q = 
~(Rap 2 - R22)L/Q, so that Rap = /TIIQ/(~L) + R22 = 1.65 m. 

Thus, as a result of simple calculations we can determine the dimensions of the ethyl- 
benzene dehydration reactor with a given pressure difference, contact-gas stay times in the 
collectors, and the catalyst layer in which the minimum possible degree of nonuniformity oc- 
curs. 

As is well known [7], the nonuniformities may significantly reduce the process indices 
(conversion, output yield), occurring within the catalyst layer, which is generally not taken 
into consideration in the design calculations. Preliminary estimates of the magnitude of 
the flow nonuniformity allows us to determine the true values of the process indices, even 
in cases in which it becomes necessary to alter the design of the apparatus. 

Particular stress should be placed on the applicability of function (17) to the design 
of various types of equipment used extensively in actual practice. Thus, when o I ~ 0, f = 0, 
02 = 0 we have a perforated distributing collector that is used in ventilation systems; when 
01 = 0, f ~ 0, together with an arbitrary 02, or when 01 = 02 = 0, f ~ 0, we have the model 
of a chemical reactor with a radial granular or block-catalyst layer, or a filtration instal- 
lation; when 01 ~ 0, f ~ 0, 02 = 0 and R 2 + ~, we have a system that is used in subsoil irri- 
gation for purposes of land reclamation. 

NOTATION 

r, z, the coordinate axes; v,  the velocity vector; v, the velocity component; ~, nor- 
malized value of the velocity component; v, average value of the velocity component; u, the 
velocity amplitude; p, pressure; Ap, the pressure difference across the apparatus; Apc, the 
pressure difference across the distributing collector; RI, the radius of the distributing 
collector; R2, the radius of the outlet collector; Rap , the radius of the apparatus; L, the 
height of the apparatus; V, the volume; Q, the flow rate; T, the stay time; f = 1.75p(i - 
e)/de 3, the coefficient of granular-material resistance; e, the porosity of the granular me- 
dium; p, the density of the liquid or the gas; d, the effective grain diameter; oi,2, repre- 
sents the coefficients of collector drag; q, the coefficient of flow-rate reduction; $, the 
degree of flow nonuniformity. Subscripts: r identifies the radial components; z denotes 
the axial component; i, 2 represent the boundaries F I and F2; in denotes the inlet to the 
distributing collector; out identifies the outlet from the apparatus; I, II, and III identify 
the zones I, II, III. 
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THE COMPLETE FILLING OF DEAD-END CONICAL CAPILLARIES 

WITH LIQUID 

G. I. Dovgyallo, N. P. Migun, and P. P. Prokhorenko UDC 532.6 

We have observed the complete bilateral filling of dead-end conical capillaries 
with liquid, which is accompanied by the rapid dissolving of the air enclosed 
within the cavities. 

We know that the nature of filling a dead-end capillary depends to a significant degree 
on the extent to which the gas enclosed within its cavity is dissolved and diffused into the 
liquid [i]. If the gas is poorly dissolved in the liquid, then in capillaries of a length 
s < i0-~ m and radius R > 0.5 Dm during the time t < 1 sec a limit filling depth s is estab- 
lished, which is defined by the equality of the capillary pressure and the pressure of the 
compressed air. As was demonstrated in [2], for conical capillaries the theoretical and 
experimental values of s are in good agreement. In the case of good solubility and diffu- 
sion of the air in the liquid filling the capillaries, the depth of this filling may be con- 
siderably greater than s A study was undertaken in [3] for the case in which dead-end coni- 
cal capillaries are filled with defectoscopic liquids, when the meniscus continues rather 
rapidly to shift into the depth of the channel after establishment of the limit depth s 

Below we describe the results from the study into the filling of dead-end small-dimen- 
sion capillaries (with a length of 30 ~m < s < 103 Dm and a radius 0.4 ~m < R < 15 ~m) with 
various liquids, thus making it possible to establish that in a number of cases the capil- 
lary is filled not only from the inlet side of the channel, but from the top as well. In 
this case, at the instant that the capillary is completely filled, the volume of liquid formed 
at the top and moving toward the inlet may be greater than half the total volume of liquid 
within the capillary. 

We used dead-end conical and cylindrical capillaries which had been drawn, by means of 
a burner, out of cylindrical glass tubing, immediately prior to the experiment. The capillary 
was glued horizontally to the bottom of the vessel which was being filled with the liquid. 
A "Biolam-R-16" microscope was used to observe the displacement of the menisci of the liquid 
in the capillary. The measurement error amounted to • ~m. 

The capillaries were filled with distilled water, ethyl alcohol, acetone, and kerosene. 
For the first of the three liquids, in each of the conical capillaries we observed the forma- 
tion and subsequent growth in a cone of liquid at the apex of the channel (Fig. i). Figure 
2 illustrates the kinetics of the growth in each of the liquid volumes in the capillary. With- 
in a specified period of time (4.4 h in Fig. 2) both fluid columns combine and the capillary 
is completely filled. As the dimensions of the capillary are reduced, the time required for 
the complete filling of the capillary is also shortened. For example, 415 sec are needed 
to fill completely a conical capillary with dimensions s = 210 ~m and R = 4 Nm with dis- 
tilled water. The conical capillaries were filled considerably more quickly with kerosene 
than with water, and this was not accompanied by any noticeable growth in the small column 
at the apex of the capillary, formed as a consequence of capillary condensation (the volume 
of this column amounted to V c < 10-3V0, where V 0 is the total volume of the capillary channel). 

Institute of Applied Physics, Academy of Sciences of the Belorussian SSR, Minsk. Trans- 
lated from Inzhenerno-Fizicheskii Zhurnal, Vol. 56, No. 4, pp. 563-565, April, 1989. Orig- 
inal article submitted November 5, 1988. 
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